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ft was reported' that dichlorocar~ne gives two adducts with hexamethyldewar~nzena (i); 

the structures were formulated as $ and 2. We wish to report that both structures were in- 

correctly assigned, that there is a third adduct, and that one of the adducts serves as an ex- 

cellent precursor of the bicyclic ketone z. 

Treatment of ,J, (810 mg) in chIo~fo~ (1.19 gf containing ethanol (32 ~1) and triethyl- 

benzylammonium chloride (16 mg) with 50% aqueous sodium hydroxide (3.3 ml) for 1 hr at room 

temperature' gave, after hydrolysis, methylene chloride extractlon, and column chromatography 

(Alcoa F-l alumina, petroleum ether eluent) three products to which we assign structures ,4, ,5 

and 6. The co~ound to which we assign structure 4 appears to be the same compound previously 
$ Q 

assigned structure 2. 
Ir 

It had a mp of 25" (reported' 24"), gave analytical data corresponding 

to C,,H,,C13 and its mass spectrum showed a molecular ion peak at m/e 210, 208.4 The pmr spec- 

trum of ,4 (CC14) was almost identical with that previously reported for 26: 61.10, 1.13 (3H 

each, s, Cl and C5 methyls), l-50-1.54 (6H, m, h~oallylically coupled mzthyls at C6 and C7), 

1.85 (3H, s, C4 methyl), 4.70, 5.01 (1H each, vinyl protons). 
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Acid hydrolysis of t7 gave <, mp 62-63', in 65% yield. The structure of 1 follows from 

its spectral dataa, independent synthesis' , and chemical transformations. 
10 

The formation of 7 ?r 

from $ clearly requires that 4, be derived from a 1:l adduct of dichlorocarbene and 1. Presum- 
11 

ably & arises from the undetected adduct Q. 

1 
:CCl, 

Cl 

2, l [J+@ 1 I Cl 
,-HC1, $ 

From the results shown in the Table, it is clear that 2 is formed by addition of di- 

chlorocarbene to $. Consequently it must have either structure $, or $, since the spectral 
13 

data show that the terminal methylene group is still present. The chemical shift data and 

expected homoallylic coupling between adjacent methyls on the C4-C5 double bond are only con- 

sistent with structure ,$. The difference in the uv spectra of 2 and 2 provides further con- 

firmation of the structural assignment (in methanol, 8 has a Xmax at 241 nm (log ~4.10) where- 

as 2 showed a shoulder at 235 nm, and end absorption at 210 nm). 

The compound to which we assign structure Q is identical with the compound previously1 

assigned structure 2. The data in the Table show that 6 is formed by the addition of dichloro- 
14 

carbene to 2. Since the spectral data show that the vinyl methylene protons are no longer 

present, structure & must be correct. The observed coupling between the adjacent methyls on C4 

Starting 
Material 

Table 1. Yields of Adducts as a Function of Reaction Conditions 

Mol Ratio of Reaction 
CHC13 to Time (hr) 

Products (%)15 

Starting Material 
1 2 Q 

2 1 47 26 1 

3 2 13 36 32 

10 3 30 59 

2 3 35 29 

3 2 57 

5 10 85 
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and C5 is expected and there is no need to call upon unusual long-range coupling' to rational- 

ize the pmr spectrum. As the Table shows, the remaining double bond in 9 is inert to further 

attack by dichlorocarbene. 

Use of bromoform in place of chloroform gave mono- and pentabromo adducts which correspond 

in structure to 4, and $. 

In summary, hexamethyldewarbenzene reacts with dichlorocarbene to give 4, which reacts fur- 

ther with dichlorocarbene to give 2, then Q. Compound 4, can be hydrolyzed.to il. The stereo- 

chemistry of 2 and $, remains to be elucidated. 
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The compound decomposes (darkens) quickly on standing, as reported;' consequently our best 

analytical data' are 1% off of theory. However the data are clearly more consistent with 4, 

than with 2, [Calcd for 4,: C, 74.44; H, 6.28; Calcd for $: C, 57.65; H, 5.88; Found: C, 

73.30; H, 7.581. 

One may well ask how it would be possible to mistake $ for {; no analytical data were repor- 

ted, but a parent peak in the mass spectrum was reported at m/e 290. One possible explana- 

tion for the discrepancy in mass spectra would be if the sample used previously' for the 

mass spectrum was contaminated with z. 
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The only discrepancy is the singlet at 61.13 which was previously reported' at 61.34. We 

have no explanation for the difference. 

1 (546 mg) in methanol (15 ml) was treated with concentrated sulfuric acid (5 ml) at 0' for 

3 hr, then hydrolyzed and worked up. 

Ir (KBr) 1680, 1635 cm 
-1 

; AR: 231 nm (E4790), 340 (60); pmr (Cc11+) 61.07, 1.16 (3H each, 

s, Cl and C5 methyls), 1.57 (9H, m, C3, C6 and C7 methyls), 1.95 (3H, q, J_=l.ZHz, C4 

methyl); m/e (rel intensity) 190 (lo), 147 (loo). 
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9. l was one (31% yield) of four products isolated from the methylation with methyl iodide 

of 4,5,6,7,B-pentamethylbicyclo[3.2.0]hepta-3,5-dien-t-one [H-N. Junker, W. Schafer and 

H. Niedenbrick, Chem. Ber., m, 2508 (1967)] in DMSD containing t-BuDK; H. Hart and 

M. Nitta, unpublished results. 

10. H. Hart and M. Nitta, Tetrahedron Lett., see following paper. 

11. The mechanism for the conversion of 3 to 1 is not yet established. One possibility is 

shown. The conversion of _i_to ii may involve a chlorohexamethyltropylium ion, or may - 

Cl 

12. 

13. 

14. 

15. 

i ii - 

involve a sequence of 1,2-shifts. 

This product was not previously' observed. 

2 is a colorless oil; ir (neat) 880 cm 
-1 

; pmr (Cc11,) 61.08, 1.28, 1.38 (3H each, s, C3, 

C6 and C7 methyls), 1.43, 1.65 (3H each, q, J_=lZHz, C4 and C5 methyls), 5.05, 5.38 (1H 

each, s, vinyl protons); Xmax MeDH 235 nm (sh), end absorption at 210 nm; m/e (rel intensity) 

292 (l), 290 (2), 119 (100). Calcd for C14H17Cls: C, 57.65; H, 5.88. Found:' C, 57.42; 

H, 5.71. 

We find mp 124-125“; ir (KBr) 2960, 1700,.1452, 1420, 1235, 1075, 1050, 905, 885, 862, 795 

765, 742 cm 
-1 

; pmr (CC14) 1.15, 1.27, 1.40 (3H each, s, C3, C6 and C7 methyls), 1.50, 

1.63 (3H each, q, J=1.5Hz, C4 and C5 methyls), 1.69, 2.07 (1H each, d, J=88.2Hz, methylene); 

x,/ziH end absorption only; m/e (rel intensity) 341 (24), 339 (47), 337 (38), 241 (100); 

Calcd for C1sH17Cls: C, 48.24, H, 4.42; Found:' C, 48.25; H, 4.50. 

All yields are of isolated, purified product. 


